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In present study, the deformation in an micropolar thermoelastic diffusion medium due to thermal
source by the use of finite element method (FEM) is investigated in the context of Lord-Shulman
(L-S) theory of thermoelastiicty. A special type of sources have been taken to show the utility of the
approach. The components of displacement, stress, microrotation, temperature change and mass
concentration are computed numerically and depicted graphically to show the impact of micropo-
larity, diffusion and relaxation times. Some particular and specials cases are also deduced from
present investigation.

Keywords: Micropolar, Diffusion, Relaxation Times, Finite Element Method.

1. INTRODUCTION
Classical elasticity is inadequate to represent the behav-
ior of material containing laminates and granular fibers as
analysis of such materials requires incorporating the the-
ory of oriented media, for this reason, micropolar theo-
ries are developed by Eringen1�2 for elastic solids, fluid
and further for non-local polar fields. Also Nowacki3

developed a theory of micropolar coupled thermoelasticity.
Later on, Touchert et al.4 formulated the basic equations
of linear theory of micropolar coupled thermoelasticity.
Chandrasekharaiah5 derived the theory of micropolar ther-
moelasticity in which heat flux is included among the con-
stitutive variables. Boschi and Iesan6 extended generalized
theory of micropolar thermoelastic that permits the trans-
mission of heat as thermal waves at finite speed.

Diffusion is important in many life processes and is
of great interest due to its various applications in geo-
physics and industrial application. These days, oil compa-
nies are interested in the process of thermoelastic diffusion
for more efficient extraction of oil from deposits. Ther-
moelastic diffusion in an elastic solid is due to coupling
of the fields of temperature, mass diffusion and that of
strain. Nowacki7–10 developed the theory of thermoelastic
diffusion. In this theory, the coupled thermoelastic model
is used. This implies infinite speeds of propagation of ther-
moelastic waves.

∗Author to whom correspondence should be addressed.

Gawinecki and Szymaniec11 proved a theorem about
global existence of the solution for a non-linear parabolic
thermoelastic diffusion problem. Sherief et al.12 developed
the theory of generalized thermoelastic diffusion with one
relaxation time, which allows the finite speed of propaga-
tion of waves. Sherief and Shaleh13 discussed a half space
problem in the theory of generalized thermoelastic diffu-
sion with one relaxation time. Kumar et al.14�15 discussed
source problems in micropolar thermodiffusive medium.
Miglani and Kaushal16 studied propagation of transverse
and microrotational waves in micropolar generalized ther-
modiffusion elastic medium. The finite element method is
well addressed in the last century and dominant numerical
method, which needs less computation in addition to their
high accuracy in literature due to which it remains the
method of choice for complex systems. A further benefit of
this method is that it allows physical effects to be visual-
ized and quantified regardless of experimental limitations.
Othman and Abbas17 studied the effect of rotation on plane
waves at the free surface of a fibrereinforced thermoelastic
half-space using the finite element method. Abbas18 inves-
tigated ramp-type heating in a generalized thermoelastic
half space with the help of finite element analysis. Abbas
et al.19 studied response of thermal source in a transversely
isotropic thermoelastic half-space with mass diffusion by
finite element method. Recently,20–22 variants problems in
waves are studied. Other forms are described for exam-
ple in the Refs. [23–25]. The counterparts of our problem
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in the contexts of the thermoelasticity theories have been
considered by using analytical and numerical methods.26–40

In present work, the Lord and Shulman theory of ther-
moelasticity is applied to study the thermal source with
the help of finite element method. Furthermore, numerical
results for the components of displacement, stresses, tem-
perature distribution, concentration and chemical potential
are represented graphically to show the impact of relax-
ation time.

2. BASIC EQUATIONS
Following Eringen,1 Nowacki,7 Lord and Shulman,26 the
governing equations for homogeneous isotropic micropo-
lar generalized thermoelastic diffusion in absence of body
forces, body couples, heat sources and diffusive mass
sources are:
The constitutive relations,

tkl = �ur�r�kl +��uk� l+ul�k�+K�ul�k−�klm�m�

−	1T�kl−	2C�kl (1)

mkl = 
�r�r�kl +	�k�l+��l�k (2)

P =−	2ekk+bC−aT (3)

Stress equations of motion,

��+��ul� lk+ ��+K�uk� ll+K�klm�m�l

−	1T�k−	2C�k = �ük (4)

Couple stress equations of motion,

�
+	��l� lk+��k�ll+K�klmum�l −2K�k = �j�̈k (5)

Equation of heat conduction,

�CE

(
1+ 0

�

�t

)
�T

�t
+	1T0

(
1+ 0

�

�t

)
�ekk
�t

+aT0

(
1+ 0

�

�t

)
�C

�t
= K∗T�ii (6)

Equation of mass diffusion,

D	2ekk� ii +DaT�ii+
(
1+ 0 �

�t

)
�C

�t
−DbC�ii = 0 (7)

where

eij =
1
2
�ui� j +uj� i� �i = 1�2�3�

	1 = �3�+2�+K�
t� 	2 = �3�+2�+K�
c

�, �-Lame’s constants, 
t-coefficient of linear ther-
mal expansion, 
c-coefficient of diffusion expansion,
�-density, K∗-thermal conductivity, CE-specific heat,
tij-components of stress tensor, mij-components of
couple stress tensor, eij-components of strain tensor,

e = ekk, �ij-kronecker delta, ui-displacement compo-
nents, �i-microrotational components, C-concentration,
j-microrotation interia, K, 
, 	, �, a, b-material constant,
t-time, T -absolute temperature, T0-temperature of medium
in its natural state assumed to be such that �T /T0� < 1,
D-thermoelastic diffusion constant, P -chemical potential
per unit mass.

3. FORMULATION AND SOLUTION OF
THE PROBLEM

We consider a homogeneous, isotropic micropolar gener-
alized thermodiffusion elastic solid in undeformed state
at temperature T0, which we designate as the medium
z ≥ 0 in rectangular cartesian co-ordinate Oxyz. We con-
sider thermoelastic plane wave in xz-plane with wave front
parallel to y-axis and all the field variables depend only on
x, z and t. As the problem considered is two dimensional,
therefore the displacement component �u and microrotation
component �� can be written as

�u= �u�0�w�� ��= �0��y�0� (8)

Using Eq. (8) in Eqs. (4)–(7), we obtain

��+��
�e0
�x

+ ��+K�� 2u−K
��y

�z
−	1

�T

�x
−	2

�C

�x

= �
�2u

�t2
(9)

��+��
�e0
�z

+ ��+K�� 2w+K
��y

�x
−	1

�T

�z
−	2

�C

�z

= �
�2w

�t2
(10)

�� 2�y+K

(
�u

�z
− �w

�x

)
−2K�y = �j

�2�y

�t2
(11)

�CE

(
1+ 0

�

�t

)
�T

�t
+	1T0

(
1+ 0

�

�t

)
�e0
�t

+aT0

(
1+ 0

�

�t

)
�C

�t
= K∗� 2T (12)

D	2

(
�2

�x2
+ �2

�z2

)(
�u

�x
+ �w

�z

)
+Da� 2T

+
(
1+ 0 �

�t

)
�C

�t
−Db� 2C = 0 (13)

The following dimensionless quantities are introduced:

x′ = �1

c1
x� z′ = �1

c1
z� u′ = �c1�1

	1T0
u

t′zz =
tzz
	1T0

� t′zx =
tzx
	1T0

� w′ = �c1�1

	1T0
w

C ′ = 	2

�C2
1

C� T ′ = 	1

�C2
1

T � �′
y =

�c21
	1T0

�y

o′ = �1
o� m′

ij =
�1

c1	1T0
mij�  ′

o = �1o

t′ = �1t

(14)
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where

c21 =
(
�+2�+K

�

)
and �1 =

�CEc
2
1

K∗

Using dimensionless quantities defined by the Eq. (14) in
Eqs. (9)–(13), we obtain (after suppressing the primes).

a1

�e0
�x

+a2�
2u−a3

��y

�z
−a4

�T

�x
−a4

�C

�x
= �2u

�t2
(15)

a1

�e0
�z

+a2�
2w+a3

��y

�x
−a4

�T

�z
−a4

�C

�z
= �2w

�t2
(16)

a5�
2�y +a6

(
�u

�z
− �w

�x

)
−a7�y =

�2�y

�t2
(17)

(
1+ 0

�

�t

)
�T

�t
+a8

(
1+ 0

�

�t

)
�e0
�t

+a9

(
1+ 0

�

�t

)
�C

�t
= � 2T (18)

a10�
2e0+a11�

2T +a12

(
1+ 0 �

�t

)
�C

�t

−a13�
2C = 0 (19)

where

a1 =
��+��

�c21
� a2 =

��+K�

�c21
� a3 =

K

	1T0

a4 =
�c21
	1T0

� a5 =
�

�jc21
� a6 =

K	1T0
j�2c21�

2
1

a7 =
2K

j��2
1

� a8 =
	3
1T

2
0

K∗�2
1�

2c21
� a9 =

a	1T0c
2
1

K∗�1	2

a10 =
D	1	2T0

�c41
� a11 =

Da�

	1

� a12 =
�c21
	2�1

a13 =
Db�

	2

� � 2 = �2

�x2
+ �2

�z2
� e0 =

�u

�x
+ �w

�z

From the Eqs. (1)–(3), with the help of (8) and (14) (after
suppressing the primes), we get the expressions for stress
components and chemical potential as

txx =
�u

�x
+h1

�w

�z
−a4T −a4C

tzz =
�w

�z
+h1

�u

�x
−a4T −a4C

txz = h3

(
�u

�z
+ �w

�z

)
+h2

(
�w

�x
+�y

)

mxy = g1
��y

�x

P = h4

(
�u

�x
+ �w

�z

)
+h5C−h6T

where

h1 =
�

�c21
� h2 =

K

�c21
� h3 =

�

�c21
� h4 =

−	1T0
�c21

h5 =
b�c21
	2
2

� h6 =
a�c21
	1	2

� g1 =
��2

1

�c41

4. INITIAL CONDITIONS
The above equations are solved subjected to initial
conditions

u=w=�y=T =C=0� u̇= ẇ= �̇y= Ṫ = Ċ=0� t=0

5. BOUNDARY CONDITIONS
We assume that, on the boundary x= 0 the displacement u
of the body does not depends on x, hence we have

u′�0� z� t�= 0

and the medium is subjected to a rough and rigid founda-
tion enough to prevent the displacement w at any time and
any point of z, then, we have

w�0� z� t�= 0

mxy�0� z� t�= 0

p = 0

T = T1H�t�H��z�−2l�

where H� � is the Heaviside unit step function, T1 is the
constant temperature applied on the boundary respectively.

6. FINITE ELEMENT FORMULATION
In this section, the governing equations of homogeneous
isotropic micropolar thermoelastic diffusion solid are sum-
marized, followed by the corresponding finite element
equations. In the finite element method, the displacement
components u, w, microrotation components �y , tempera-
ture change T and mass concentration C are related to the
corresponding nodal values by

u=
m∑
i=1

Niui�t�� w =
m∑
i=1

Niwi�t�� �y =
m∑
i=1

Ni�yi�t�

T =
m∑
i=1

NiTi�t�� C =
m∑
i=1

NiCi�t�

where m denotes the number of nodes per element, Ni are
the shape functions. The eight node isoparametric, quadri-
lateral element is used for displacement, microrotation,
temperature and concentration calculations. The weighting
functions and the shape functions coincide, thus,

�u=
m∑
i=1

Ni�ui�t�� �w =
m∑
i=1

Ni�wi�t�
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��y =
m∑
i=1

Ni��yi�t�� �T =
m∑
i=1

Ni�Ti�t�

�C =
m∑
i=1

Ni�Ci�t�

It should be noted that appropriate boundary conditions
associated with the governing Eqs. (15)–(19) must be
adopted in order to properly formulate a problem Bound-
ary conditions are either essential (or geometric) or natu-
ral (or traction) types. Essential conditions are prescribed
displacement components u, w, microrotation components
�y, temperature change T and mass concentration C,
while, the natural boundary conditions are prescribed trac-
tions, heat flux, mass flux and couple stress which are
expressed as

txxnx + tzxnz = ̄x� txznx + tzznz = ̄zz

qxnx+qznz = q̄� �xnx +�znz = �̄� mxynx = m̄

where nx, ny and nz are direction cosines of the outward
unit normal vector at the boundary, ̄x , ̄z are the given
tractions values, q̄ is the given surface heat flux, �̄ is the
given surface mass flux and m̄is the given couple traction
component. In the absence of body force, the governing
equations are multiplied by weighting functions and then
are integrate over the spatial domain � with the bound-
ary � . Applying integration by parts and making use of the
divergence theorem reduce the order of the spatial deriva-
tives and allows for the application of the boundary condi-
tions. Thus, the finite element equations corresponding to
Eqs. (15)–(19) can be obtained as

m∑
e=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Me
11 0 0 0 0

0 Me
22 0 0 0

0 0 0 Me
33 0

Me
41 Me

42 0 Me
44 Me

45

0 0 0 0 Me
55

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

üe

ẅe

�̈e
y

T̈ e

C̈e

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 Re
14 Re

15

0 0 0 Re
24 Re

25

0 0 0 0 0

Re
41 Re

42 0 Re
45 Re

45

0 0 0 Re
54 Re

55

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

u̇e

ẇe

�̇e
y

Ṫ e

Ċe

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ke
11 Ke

12 Ke
13 Ke

14 Ke
15

Ke
21 Ke

22 Ke
23 Ke

24 Ke
25

Ke
31 Ke

32 Ke
33 0 0

0 0 0 Ke
44 0

Ke
51 Ke

52 0 Ke
54 Ke

55

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ue

we

�e
y

T e

Ce

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(20)

where the coefficients in above equation are given
below

Me
11=Me

22=Me
33=

∫
�
�N �T �N �d�

Me
41=

∫
�
�N �T

[
�N

�x

]
d�� Me

42=
∫
�
�N �T

[
�N

�z

]
d�

Me
44=

∫
�
0�N �T �N �d�� Me

45=
∫
�
a90�N �T �N �d�

Me
55=

∫
�
a12

0�N �T �N �d�

Re
14=−

∫
�
a4�N �T

[
�N

�x

]
d�� Re

15=−
∫
�
a4�N �T

[
�N

�x

]
d�

Re
24=−

∫
�
a4�N �T

[
�N

�z

]
d�� Re

25=−
∫
�
a4�N �T

[
�N

�z

]
d�

Re
41=

∫
�
a80�N �T

[
�N

�x

]
d�� Re

42=
∫
�
a8�N �T

[
�N

�z

]
d�

Re
44=

∫
�
�N �T �N �d�� Re

45=
∫
�
a9�N �T �N �d�

Re
54=

∫
�
a11

([
�N

�x

]T [
�N

�x

]
+
[
�N

�z

]T [
�N

�z

])
d�

Re
55=

∫
�
a12�N �T �N �−a13

([
�N

�x

]T [
�N

�x

]
+
[
�N

�z

]T [
�N

�z

])
d�

Ke
11=

∫
�
�a1+a2�

[
�N

�x

]T [
�N

�x

]
+a2

[
�N

�z

]T [
�N

�z

]
d�

Ke
12=

∫
�
a1

[
�N

�x

]T [
�N

�z

]
d�

Ke
13=−

∫
�
a3�N �T

[
�N

�z

]
d�

Ke
14=Ke

15=−
∫
�
a4�N �T

[
�N

�x

]
d�

Ke
21=

∫
�
a1

[
�N

�z

]T [
�N

�x

]
d�

Ke
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∫
�
�a1+a2�

[
�N

�z

]T [
�N

�z

]
+a2

[
�N

�x

]T [
�N

�x

]
d�

Ke
23=−

∫
�
a3�N �T

[
�N

�z

]
d�

Ke
24=Ke

25−
∫
�
a4�N �T

[
�N

�z

]
d�

Ke
31=

∫
�
a6�N �T

[
�N

�z

]
d�� Ke

32=−
∫
�
a6�N �T

[
�N

�z

]
d�

Ke
33=

∫
�
a5
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�N

�x

]T [
�N

�x

]
+
[
�N

�z

]T [
�N

�z

])
−a7d�

Ke
44=

∫
�
K
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�N

�x

]T [
�N

�x

]
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[
�N

�z

]T [
�N

�z
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d�
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Ke
51=

∫
�
a10�N �T

[
�N

�x

]([
�N

�x

]T [
�N

�x

]
+
[
�N

�z

]T [
�N

�z

])
d�

Ke
52=

∫
�
a10�N �T

[
�N

�z

]([
�N

�x

]T [
�N

�x

]
+
[
�N

�z

]T [
�N

�z

])
d�

Ke
54=

∫
�
a10

([
�N

�x

]T [
�N

�x

]
+
[
�N

�z

]T [
�N

�z

])
d�

Ke
55=−

∫
�
a13

([
�N

�x

]T [
�N

�x

]
+
[
�N

�z

]T [
�N

�z

])
d�

Symbolically, the discretized equations of the Eq. (20) can
be written as

Md+Rd+Kd = F ext

where M , R, K and F ext represents the mass, damping,
stiffness matrices and external force vector, respectively;
d = �u w �y T C�T . On the other hand, the time deriva-
tives of the unknown variables have to be determined by
newmark time intergration method or other methods (see
Ref. [41]).

7. NUMERICAL RESULTS AND DISCUSSION
For numerical computations, the values of relevant param-
eters for micropolar thermoelastic diffusion with relaxation
times are taken as under micropolar elastic parameters:

�= 9�4×1010 N m−2� �= 4�0×1010 N m−2

K = 1�0×1010 N m−2� � = 0�779×10−9 N

�= 1�74×103 Kg m−3

Thermoelastic diffusion parameters:

C∗=1�0 J kg−1 deg−1� K∗=1�7×102 J m−1 sec−1 deg−1


t=1�78×10−5 K−1� 
c=1�98×10−4 m3 kg−1

b=0�9×106 m5 kg−1 s−2� D=0�85×10−8 kg s m−3

a=1�2×104 m2 s−2 K−1� j=0�2×10−19 m2

T0=298 K� 0=0�02 s� 0=0�01 s

The variations of variation of compontents of displace-
ment, stresses, concentration, temperature and chemical

Fig. 1. Tangential displacement distribution.

Fig. 2. Normal displacement distribution.

potential with distance x is shown graphially for L-S and
CT theory of thermoelasticity. The solid line, small dashed
line corresponds to CT theory for z = 0�2 and z = 0�3,
whereas dashed line (Bold) and dashed line represents the
cases of L-S theory for z= 0�2 and z= 0�3.
It is noticed from Figure 1 that initially values of u

for L-S and CT at z = 0�3 are greater in magnitude as
compared to those observed at z= 0�2 and as x increases,
values of u approaches towards origin.
Figure 2 shows the variation of w with distance x. It is

noticed that the values of w for L-S and CT theory shows
non-uniform pattern in first half of interval and further as
x increases value of w shows steady state about origin.
It is noticed from Figure 3, which is a plot of �y that

initially value of �y for L-S and CT theory at z = 0�3
decreases with greater magnitude as compared to those
observed at z= 0�2 and as x increases, value of �y shows
small variations about zero value.
It is observed from Figure 4, which is a plot of C that

value of C decreases in the entire range and approaches
towards zero value.
It is observed from Figure 5 that values of T for both

L-S and CT theory of thermoelasticity decreases in first
half of interval and thereafter approaches to zero value.
From Figure 6, It is noticed that value of txx increases

in the entire range except in the range 0�1≤ x≤ 0�3 where
decreasing trends are noticed.

Fig. 3. Microrotation distribution.
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Fig. 4. Mass concentration distribution.

It is observed from Figure 7, value of tzx for
CT theory are greater in magnitude as compared
to those obtained for L-S theory at z = 0�3 and
z= 0�2.
It is noticed form Figure 8, which is plot for tzz that the

values of tzz at z = 0�3 for L-S and CT theory decreases
in the range 0�1 ≤ x ≤ 0�3 and increases in the rest of
interval. Whereas, value of tzz at z= 0�2 for both theories
increases in first half of interval and then it shows steady
state about zero value.
Figure 9 shows the variations of mxy with distance x.

It is noticed that values of mxy for L-S and CT theory
decreases initially, magnitude of values at of values at

Fig. 5. Temperature distribution.

Fig. 6. Normal stress txx distribution.

Fig. 7. Tangential stress txz distribution.

z= 0�3 are greater in comparison to those observed at
z= 0�2 and after that till x = 0�3, values of mxy increases
and as increases, value of mxy shows small variations about
zero value.
It is noticed that from Figure 10, that values of P

decreases in entire range for both theories of thermoelas-
ticity, magnitude of values for L-S theory are greater in
comparison to those observed for CT theory, which reveals
the impact of relaxation time.

Fig. 8. Normal stress tzz distribution.

Fig. 9. Couple stress distribution.
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Fig. 10. Chemical potential distribution.

8. CONCLUSION
A two dimensional problem in an homogenous isotropic
micropolar thermodiffusion elastic medium is studied in
the context of the Lord-Shulman theory of thermoelastic-
ity. The problem has been solved numerically by using
the finite element method. It is observed from the above
numerical discussion that near the point of application
of source the impact of both theories of thermoelastic-
ity has significant effect on all field quantities and as x
increases the values of various components so obtained,
tends to zero value in an oscillatory manner. It is also
noticed different values of z shows impact on components
so obtained.
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